Average-Case Analysis of Quicksort

Hanan Ayad

1 Introduction

Quicksort is a divide-and-conquer algorithm for sorting a list \(S \) of \(n \) comparable elements (e.g. an array of integers). The steps of quicksort can be summarized as follows.

1. If \(n \) is 0 or 1, then return.
2. Pick an element \(p \in S \), which is called the \textit{pivot}. We suppose that we pick randomly.
3. Partition \(S \setminus \{p\} \) into two disjoint sublists \(S_L \) (left sublist) and \(S_R \) (right sublist), as follows:
 \[
 S_L = \{ s \in S \setminus \{p\} | s \leq p \}, \quad \text{and} \quad S_R = \{ s \in S \setminus \{p\} | s \geq p \}
 \]
4. Recursively apply quicksort on each of the sublists \(S_L \) and \(S_R \).

Given its recursive design, the analysis of quicksort involves solving the recurrence relation \(t(n) \) that describes its run time. Its run time \(t(n) \) is equal to the sum of run times of the two recursive calls and of the run time \(f(n) \) required for selecting the pivot and partitioning \(S \) into \(S_L \) and \(S_R \). We have \(f(n) = \Theta(n) \), because this work can be done in one pass through \(S \). Hence, \(t(n) \) is given by:

\[
t(n) = t(i) + t(n-i-1) + n, \quad \text{for } n > 1, \quad \text{and} \quad t(0) = t(1) = 1,
\]

where \(i = |S_L| \) is the size of the left sublist.

2 Average-Case Analysis

For the pivoting and partitioning strategy defined above, we can assume that each possible size of \(S_L \) (and consequently \(S_R \)) is equally likely. Possible sizes are 0, 1 . . . , \(n - 1 \), each having a probability \(\frac{1}{n} \). Hence, the average value of the run time \(t(n) \) in Eq. 1 is given by,

\[
t(n) = \frac{1}{N} \left[\sum_{i=0}^{n-1} t(i) + t(n-i-1) \right] + n
\]

Since \(\sum_{i=0}^{n-1} t(i) = \sum_{i=0}^{n-1} t(n-i-1) \), \(t(n) \) can be written as,

\[
t(n) = \frac{2}{N} \left[\sum_{i=0}^{n-1} t(i) \right] + n
\]

The steps below apply some algebraic manipulations in order to put the recurrence relation in a solvable form. First, multiplying by \(n \), we get

\[
n t(n) = 2 \left[\sum_{i=0}^{n-1} t(i) \right] + n^2
\]

Substituting \(n \) by \(n - 1 \), we get,
\[(n - 1)t(n - 1) = 2\sum_{i=0}^{n-2} t(i) + (n - 1)^2\]

(5)

By subtracting Eq. 5 from Eq. 4, we obtain,

\[nt(n) - (n - 1)t(n - 1) = 2t(n - 1) + 2n - 1\]

(6)

Rearranging and simplifying, we get,

\[nt(n) = (n + 1)t(n - 1) + 2n\]

(7)

Dividing both sides by \(n(n + 1)\), we get,

\[\frac{t(n)}{n + 1} = \frac{t(n - 1)}{n} + \frac{2}{n + 1}\]

(8)

Applying back substitution we get,

\[
\frac{t(n)}{n + 1} = \frac{t(n-2)}{n-1} + \frac{2}{n-1} + \frac{2}{n+1} \\
= \frac{t(n-3)}{n-2} + \frac{2}{n-2} + \frac{2}{n} + \frac{2}{n+1} \\
= \ldots \\
= \frac{t(1)}{2} + 2\sum_{i=3}^{n+1} \frac{1}{i} \\
\approx \frac{1}{2} + 2[\ln(n + 1) + \gamma - \frac{3}{2}]
\]

where \(\gamma \approx 0.577\) is Euler’s constant. Therefore,

\[
\frac{t(n)}{n + 1} = O(\log n) \quad \text{and hence}, \\
t(n) = O(n \log n).
\]

References